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Abstract

Hypotheses about the functions of ancient proteins and the effects of historical mutations on them are often tested using
ancestral protein reconstruction (APR)—phylogenetic inference of ancestral sequences followed by synthesis and exper-
imental characterization. Usually, some sequence sites are ambiguously reconstructed, with two or more statistically
plausible states. The extent to which the inferred functions and mutational effects are robust to uncertainty about the
ancestral sequence has not been studied systematically. To address this issue, we reconstructed ancestral proteins in
three domain families that have different functions, architectures, and degrees of uncertainty; we then experimentally
characterized the functional robustness of these proteins when uncertainty was incorporated using several approaches,
including sampling amino acid states from the posterior distribution at each site and incorporating the alternative amino
acid state at every ambiguous site in the sequence into a single “worst plausible case” protein. In every case, qualitative
conclusions about the ancestral proteins’ functions and the effects of key historical mutations were robust to sequence
uncertainty, with similar functions observed even when scores of alternate amino acids were incorporated. There was
some variation in quantitative descriptors of function among plausible sequences, suggesting that experimentally char-
acterizing robustness is particularly important when quantitative estimates of ancient biochemical parameters are
desired. The worst plausible case method appears to provide an efficient strategy for characterizing the functional
robustness of ancestral proteins to large amounts of sequence uncertainty. Sampling from the posterior distribution
sometimes produced artifactually nonfunctional proteins for sequences reconstructed with substantial ambiguity.
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Introduction

Ancestral protein reconstruction (APR)—phylogenetic infer-
ence of ancient protein sequences, followed by gene synthesis,
expression, and experimental characterization—has become a
widely used strategy to experimentally test hypotheses about
the functional and biochemical properties of ancient proteins
(Jermann et al. 1995; Chandrasekharan et al. 1996; Chang et al.
2002; Thornton et al. 2003; Thomson et al. 2005; Gaucher et al.
2008; Hobbs et al. 2012; Akanuma et al. 2013; Bar-Rogovsky
et al. 2013; Risso et al. 2013; Williams et al. 2013; Boucher et al.
2014; Akanuma et al. 2015; Bickelmann et al. 2015; Carrigan
et al. 2015; Clifton and Jackson 2016; Devamani et al. 2016;
Steindel et al. 2016). APR has also been used to experimentally
determine the effects of specific historical changes in protein
sequence on the properties of ancient proteins by introducing
mutations that recapitulate ancient sequence substitutions
into reconstructed ancestral proteins (Zhang and Rosenberg
2002; Bridgham et al. 2006; Kaiser et al. 2007; Ortlund et al.
2007; Yokoyama et al. 2008; Lynch et al. 2011; Finnigan et al.
2012; Harms et al. 2013; Smith et al. 2013; Wilson et al. 2015). By

combining explicit reconstruction of history with experimental
analysis of molecular properties, APR can bring the decisive
inference style of molecular biology to questions about the
mechanisms and dynamics by which proteins evolved.

The advantages of APR, however, depend upon the reli-
ability of the inferred ancient sequences. Most APR studies
have reconstructed ancestral sequences using the maximum
likelihood (ML) approach, which yields a single best estimate
of the ancestral sequence (Yang et al. 1995; Pupko et al. 2000).
Beginning with an alignment of present-day protein se-
quences and a phylogeny of those sequences, ML-APR uses
a probabilistic Markov model of the process of sequence
evolution to calculate the likelihood of every possible ances-
tral state at every site in the protein sequence for any internal
node of interest on the phylogeny. The likelihood of an an-
cestral amino acid state at some site is defined as the prob-
ability that all the states at this site found in present-day
proteins at the tips of the tree would have evolved given
that ancestral state, the phylogeny, and the model. The
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posterior probability (PP) of that state can then be expressed
as the likelihood of that state (weighted by its equilibrium
frequency, which serves as the prior) divided by the sum of
the prior-weighted likelihoods of all 20 possible states at that
site. The maximum likelihood (ML) estimate of the ancestral
state (or, strictly speaking, the maximum a posteriori esti-
mate) is the one with the highest prior-weighted likelihood.
The ML estimate of the ancestral sequence is the string of ML
states at all sites; it represents the ancestral sequence that
maximizes the conditional probability that all observed ex-
tant sequences in the alignment would have evolved.

The ML sequence is the best point estimate of the true
ancestral sequence, but it is seldom inferred with certainty. In
virtually all real-world cases, the reconstructed ML sequence
contains some ambiguously inferred sites. At such sites, the
PP of the ML state is less than 1, and less likely but still
plausible alternative states exist. Uncertainty typically arises
when the pattern of amino acids across the tips of the phy-
logeny requires numerous independent changes of state
given any of the plausible ancestral amino acids and these
scenarios have probabilities that are not dramatically different
from each other given the tree and its branch lengths.

This uncertainty implies that although the ML sequence is
the most accurate estimate of the true ancestral sequence
given the data, model, and tree, it is likely to contain some
erroneously reconstructed states. Consider a 200 amino acid
ancestral protein containing 180 unambiguously recon-
structed sites (PP¼ 1.0) and 20 sites at which two states
are plausible with PPs of 0.8 and 0.2. The probability that
the ML sequence is correct at every single site is 1180 �
0.820¼1.2%, and the expected number of erroneous residues
in the sequence is 4. The ML reconstruction sits at the center
of a cloud of plausible alternative sequences, each of which
contains alternative states at some of the ambiguously recon-
structed sites; with increasing distance from the ML sequence,
expected accuracy declines. The ML sequence’s plausible im-
mediate neighbors—the reconstructions containing the plau-
sible alternative state at one site—each has only a 0.3%
chance of being precisely correct and 4.6 expected errors. In
the set of sequences containing two plausible alternative
states, each sequence has a 0.07% chance of being correct
and 5.2 expected errors, and so on. At the far edge of the
cloud of plausible sequences, the sequence containing the
alternate state at all 20 ambiguously reconstructed sites has
only a 10�14 probability of being correct and is expected to
contain 16 errors.

The goal of APR is to determine the ancestral protein’s
functional characteristics, not its precise sequence.
Nevertheless, experiments to determine function depend
upon inference of the sequence. Thus, a crucial question in
any study using APR is the extent to which the properties of
reconstructed ancestral proteins are robust to statistical un-
certainty about their primary sequence. Most studies to date
that have addressed this question have done so by generating
variants of the ML ancestral sequence, each of which contains
a plausible alternate amino acid at one of the ambiguously
reconstructed sites (typically defined as amino acids with a
posterior probability above some arbitrary but reasonable

cutoff, such as 0.2). The experimental characterization is
then repeated for each of these single-residue neighbors of
the ML sequence (Yokoyama and Radlwimmer 2001; Zhang
and Rosenberg 2002; Ugalde et al. 2004; Thomson et al. 2005;
Bridgham et al. 2006; Goldschmidt et al. 2008; Carroll et al.
2011; Eick et al. 2012; Finnigan et al. 2012; Bickelmann et al.
2015). This approach is sufficient to determine the impact of
each plausible alternate amino acid—and thus of uncertainty
at each ambiguous site—in isolation on inferences about the
ancestral protein’s function. If ambiguously reconstructed
sites interact epistatically, however, it is possible that the
true ancestral sequence may have functions different from
those of the ML ancestor and its immediate single-variant
neighbors.

A second strategy, used in only a few cases, introduces all
of the plausible alternate states into a single protein and then
functionally characterizes this “worst plausible case” protein,
which we refer to as the AltAll reconstruction. (Akanuma
et al. 2013; Bridgham et al. 2014; McKeown et al. 2014;
Anderson et al. 2016). The AltAll sequence contains more
errors than any other plausible reconstruction and is typically
much more different from the ML protein than the true
ancestral protein is expected to be. Its characterization there-
fore represents a fairly conservative test of functional robust-
ness to sequence uncertainty: if the ML and AltAll ancestors
both lead to the same inference of the ancestral protein’s
function, it is assumed that the correct ancestral se-
quence—which most likely lies between these sequences,
but much closer to the ML sequence—is likely to share the
inferred function, as well. This approach addresses potential
epistatic interactions among plausible alternative states. It
also is practicable in cases in which the number of ambigu-
ously reconstructed residues is so large that the strategy of
creating all single-mutant neighbors is impractical.

A third strategy is to use Bayesian sampling to construct a
set of sequences by choosing an amino acid state from the
posterior probability distribution of ancestral states at each
site. Several such sampled proteins are then constructed and
assayed to provide some indication of the distribution of
functions associated with the posterior probability distribu-
tion of sequences (Williams et al. 2006; Pollock and Chang
2007; Gaucher et al. 2008; Hobbs et al. 2012; Hart et al. 2014;
Howard et al. 2014; Risso et al. 2014; Bickelmann et al. 2015).
This strategy calculates the posterior probability distribution
of ancestral sequence states given model parameters esti-
mated from the data by maximum likelihood, so it represents
an empirical Bayesian rather than fully Bayesian technique.
The strategy is appealing in principle, but a concern is the
possible production of nonfunctional proteins: the ensemble
of all possible sequences contains far more very low-
probability than high-probability sequences, particularly
when ambiguity in the reconstruction is high, and if recon-
struction errors are more likely to be functionally deleterious
than beneficial, there may be a bias towards non-functional or
poorly functioning proteins. A variation of this approach is to
generate a large number of ancestral sequences by sampling
from the posterior distribution, and then experimentally
characterize reconstructions from this ensemble that have a
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high likelihood of being correct (Eick et al. 2012). Such high-
probability sampled proteins also typically combine large
numbers of plausible alternate states—helping to address
the issue of epistasis —but not as many as the highly conser-
vative AltAll ancestors.

The AltAll and Bayesian approaches have been used in
only a handful of cases, so it remains unclear how generally
robust functional inferences using APR are to simultaneous
incorporation of multiple alternate states. To better under-
stand this issue, we applied the AltAll and Bayesian sampling
strategies to reconstructed ancestral proteins in three differ-
ent families of protein domains—guanylate kinase enzyme/
protein interaction domains, steroid hormone receptor
DNA-binding domains, and steroid hormone receptor
ligand-binding/transactivation domains. These families
have different kinds of functions and architectures, and
they vary in the amount of ambiguity in their ancestral re-
constructions. Each has been studied in previously published
papers using ML-APR to characterize the functions of recon-
structed ancestral proteins and to identify key historical
mutations that, when introduced into the reconstructed
ancestral sequence, recapitulate major shifts in protein func-
tion. For each family, we compared the functions of the
AltAll and Bayesian ancestors with those of the ML ancestor
to determine whether the published inferences are robust to
incorporation of uncertainty at multiple sites using these
strategies. We also compared the effects of introducing
the key historical substitutions into the ML and AltAll an-
cestors to characterize the robustness of these inferences to
uncertainty about the ancestral sequence.

Results

Exemplar Protein Families
We focused on three families of protein domains that have
been the subject of previous work using ML-APR. The first,
the GK domain family, contains two structurally similar but
functionally distinct groups: the guanylate kinase (gk) en-
zymes, which catalyze the transfer of a phosphoryl group
from ATP to GMP, and the GKPID domains, which mediate
protein–protein interactions (Anderson et al. 2016). A bio-
logical function of GKPIDs is to bind a protein called Pins, an
association that is crucial for orientation of the mitotic spin-
dle in animal cells. All forms of life contain gk enzymes; a
duplication of the gk gene and subsequent sequence diver-
gence produced the GKPID, which is found only in animals
and closely related unicellular protists. A recent study
(Anderson et al. 2016) reconstructed ancestral GK proteins
and found that the last common ancestor of gk enzymes and
GKPIDs—called Anc-gkdup, which existed just before the gene
duplication that produced the two separate proteins—was
an effective guanylate kinase with no Pins-binding or spindle-
orienting activity. Its daughter node on the tree—the ances-
tor of all GKPIDs—bound Pins with moderate affinity and
could mediate spindle orientation in cultured cells in which
endogenous GKPID had been disabled. A single substitution
(s36P) that occurred on the branch between these two an-
cestral proteins was sufficient to confer on Anc-gkdup both

Pins-binding and spindle orienting functions and to abolish
the ancestral guanylate kinase enzyme activity.

The second family of protein domains we evaluated
was the DNA binding domain (DBD) of steroid hormone
receptors (SRs). SRs are ligand-activated transcription fac-
tors, the DBDs of which bind as dimers to palindromic
response elements composed of inverted repeats of a six
base half-site. There are two phylogenetic classes of SRs in
vertebrates, which differ in their DNA-specificity at the
two central bases of the half-site: estrogen receptors (ERs)
bind preferentially to estrogen response elements (EREs),
which are palindromes of AGGTCA; the other clade,
which contains receptors for progestagens, androgens,
and gluco- and mineralocorticoids (PR, AR, GR, and
MR), binds to steroid response elements (SREs), the pro-
totype of which is a palindrome of AGAACA. A recent
publication reconstructed the last common ancestor of
the two clades (AncSR1DBD) and found that it bound
and activated transcription specifically on EREs, with no
activation and much lower affinity for SREs. SRE recogni-
tion emerged on the daughter branch leading to the an-
cestor of the PR, AR, GR, and MR (AncSR2DBD), which
activated solely on SREs with no activation from and
lower affinity for EREs. A set of 14 historical substitutions,
when introduced into the AncSR1DBD, was sufficient to
recapitulate the switch in specificity (McKeown et al.
2014; Anderson et al. 2015).

The third domain family is the ligand-binding domain
(LBD) of the SRs. SR LBDs specifically bind steroid hormones
and regulate transcription of target genes near the response
element to which their DBD is anchored. The two phyloge-
netic classes of vertebrate SRs also differ in their ligand spe-
cificity. ERs are specifically activated by estrogens, which have
an aromatized A-ring (where the four rings on the steroid
backbone are denoted with the letters A-D). PR, AR, GR, and
MR, in contrast, all bind steroids with a non-aromatized A-
ring. A recent pair of publications reconstructed the LBD of
AncSR1 and found that it had ER-like specificity for aroma-
tized estrogens, whereas the LBD of AncSR2—like PR, AR, GR,
and MR—specifically activated transcription in the presence
of non-aromatized steroids but not estrogens (Eick et al. 2012;
Harms et al. 2013). Two substitutions that occurred on the
branch between AncSR1LBD and AncSR2LBD were sufficient
to switch ligand preference, restoring estrogen-specific acti-
vation when the ancestral states were introduced into
AncSR2LBD and recapitulating activation by non-aromatized
steroids when the derived states were introduced into
AncSR1LBD (Harms et al. 2013).

These studies all used the ML sequence as the basis for
their published inferences about functions and mutational
effects. The degree of uncertainty varied among the ancestral
proteins studied, with Anc-gkdup having relatively high confi-
dence (mean PP over sites¼ 0.94, 11% of sites ambiguously
reconstructed), AncSR1DBD having medium confidence
(mean PP¼ 0.87, 15% ambiguous sites), and AncSR1LBD hav-
ing very high uncertainty (mean PP¼ 0.70, 26% ambiguous
sites). Ambiguously reconstructed sites were defined as those
at which more than one state had posterior probability>0.20
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(supplementary table S2, Supplementary Material online).
Some but not all of the strategies we assess for characterizing
robustness have been applied previously to these protein
families (Eick et al. 2012; McKeown et al. 2014; Anderson
et al. 2016); here we use both new and already published
data to systematically evaluate these approaches.

ML-APR Functional Inferences are Qualitatively
Robust to Sequence Uncertainty
We first evaluated the AltAll strategy by introducing all plau-
sible alternate amino acids into the ML ancestor. The AltAll
sequence contains the ML state at all unambiguously recon-
structed sites and the plausible alternate state (the state with
second-highest posterior probability, if>0.2) at all ambiguous
sites. We expressed each AltAll protein, characterized its func-
tions using the same methods previously used to characterize
the ML ancestral protein, and compared the results.

For all three protein domains, the AltAll reconstructed
sequences were very different from their corresponding ML
ancestors, with differences at 12, 20, and 65 sites in the DBD,
GK, and LBD ancestors, respectively. In the most extreme case
(AncSR1LBD), the AltAll protein was different from the ML
ancestor at almost 30% of residues (table 1). All AltAll se-
quences were far less likely to be precisely correct than the ML

ancestor, with total posterior probability lower than that of
the ML ancestor by factors ranging from 10�2 to 10�13 (table
1). All three AltAll sequences contained more expected errors
than their corresponding ML ancestors.

We experimentally characterized the AltAll ancestors and
found that all three had functions qualitatively similar to
those of the ML ancestors, indicating general robustness to
uncertainty. For Anc-gkdup, both the AltAll and ML recon-
structions were active guanylate kinases with kinetic param-
eters comparable to those of extant gk enyzmes, with no
detectable Pins binding activity (fig. 1A and supplementary
fig. S1, Supplementary Material online; Anderson et al., 2016).
In the AncSR1DBD, the AltAll and ML reconstructions both
activated luciferase reporter transcription robustly from ERE
but not SRE (fig. 1B; McKeown et al., 2014). And, in the SR
ligand binding domain, both versions of AncSR1LBD were
highly sensitive to estradiol and insensitive to a non-
aromatized steroid, whereas both versions of AncSR2 LBD
were very sensitive to non-aromatized steroids and unre-
sponsive to estrogens (fig. 1C; supplementary table S1 and
fig. S2, Supplementary Material online). These experi-
ments indicate that in all cases studied, the central infer-
ences about ancestral proteins’ functions are robust to
statistical uncertainty about their precise sequence.

Table 1. Summary Statistics for Ancestral Reconstructions in this Study.

Ancestor Ln Posterior Probability (PP) Ln PP Units Worse Than ML Average PP # Expected Errors # Sites Different From ML Ancestor

Anc-gkdup

ML �14.6 – 0.94 12 0/187
AltALL �27.8 13.2 0.91 18 20/187
Bayes 1 �25.4 10.8 0.92 15 7/187
Bayes 2 �28.1 13.5 0.92 15 5/187
Bayes 3 �29.9 15.3 0.91 17 11/187
Bayes 4 �34.9 20.4 0.91 17 13/187
Bayes 5 �36.7 22.1 0.91 17 10/187

AncSR1 DBD
ML �15.6 – 0.87 11 0/82
AltALL �20.1 4.5 0.85 12 12/82
Bayes 1 �23.0 7.4 0.85 12 7/82
Bayes 2 �29.4 13.8 0.82 15 12/82
Bayes 3 �30.0 14.4 0.84 13 9/82
Bayes 4 �39.5 23.9 0.82 15 10/82
Bayes 5 �40.0 24.4 0.82 16 12/82

AncSR1 LBD
ML �123.0 – 0.69 76 0/249
AltALL �153.6 30.6 0.64 88 65/249
Best 1 �176.6 53.6 0.64 89 57/249
Best 2 �177.3 54.3 0.65 88 55/249
Best 3 �177.5 54.5 0.64 90 57/249
Best 4 �177.8 54.8 0.65 87 55/249
Best 5 �177.5 54.5 0.65 87 59/249
Bayes 1 �228.9 105.9 0.60 99 75/249
Bayes 2 �233.2 110.2 0.61 97 77/249
Bayes 3 �229.5 106.5 0.61 96 76/249
Bayes 4 �236.3 113.3 0.59 101 86/249
Bayes 5 �227.1 104.1 0.61 96 76/249

AncSR2 LBD
ML �23.0 – 0.93 17 0/249
AltALL �41.7 18.7 0.90 25 26/249

NOTE.—For each ancestral protein sequence, columns show the natural logarithm of the posterior probability (Ln PP), the difference in Ln PP compared to the maximum
likelihood (ML) reconstruction, the mean PP over sites, the number of expected errors in the sequence given its PP, the number of sites that are different from the ML
reconstruction, and the total number of residues in the protein.
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For AncSR2LBD, we also experimentally characterized al-
ternative reconstructions, each containing just one of the 26
plausible alternate states (Eick et al. 2012). These data pro-
vided useful context for interpreting the observed functions
of the ML and Alt-All reconstructions. We found that these
single-variant plausible ancestors occupied a relatively tight
cloud of phenotypes defined by their sensitivity to non-aro-
matized steroids and insensitivity to estrogens; the ML and

AltAll ancestral forms were both contained within this cloud
(fig. 1C). These data indicate directly that in this protein, there
is little epistasis among plausible alternative states with re-
spect to the form of ligand specificity studied.

Although the qualitative phenotypes were all consistent
between AltAll and ML reconstructions, there were nontrivial
quantitative differences in the measured functional parame-
ters. Anc-gkdup AltAll displayed a turnover rate three times
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FIG. 1. Functional inferences based on ML-APR are robust to incorporation of uncertainty. For each protein domain family tested, the functional
properties of the ML and AltAll ancestral reconstructions are shown (left panels), with a reduced phylogeny (center) and cartoon representation of
the functions being assayed. (A) ML and AltAll versions of the ancestral guanylate kinase (Anc-gkdup) both function as enzymes (orange), in
contrast to the ancestor of GK protein interaction domains (AncGK1PID, black). The left and right graphs show gunaylate kinase activity and
peptide binding affinity, respectively. Error bars indicate SEM of three independent experiments. (B) Both the ML and AltAll AncSR1DBDs activate
preferentially on the estrogen response element (ERE, green) rather than the steroid response element (SRE, blue) in a luciferase reporter assay. ML
and AltAll versions of AncSR2 preferentially activate from SREs. Column height and error bars indicate mean and SEM from three experiments with
three replicates each. (C) Both ML and AltAll AncSR1LBDs (purple square and star, respectively) are activated by estradiol (an aromatized steroid)
but not 11-deoxycorticosterone (a non-aromatized steroid) in a luciferase reporter assay. In contrast, ML and AltAll AncSR2LBDs (blue square and
star, respectively) are preferentially activated by the non-aromatized steroid. Single-substitution neighbors of ML AncSR2LBD containing a single
plausible alternative state are indicated by open gray circles. Each point shows the concentration of hormones at which half-maximal activation is
achieved (EC50); error bars show 95% confidence intervals. Some results in this figure were previously reported in Eick et al. (2012), McKeown et al.
(2014), and Anderson et al. (2016).
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faster than that of the ML reconstruction (fig.1A), but both
are within the normal range for extant members of the family
(supplementary fig. S1, Supplementary Material online). Both
the ML and AltAll versions of AncSR1DBD activated tran-
scription robustly from ERE and not at all from SRE, but the
magnitude of activation on ERE ranged from 9-fold above
control for ML to 16-fold for AltAll (fig. 1B). Similarly, the
EC50s for activation of AncSR1LBD and AncSR2LBD varied
by a factor of three between ML and AltAll reconstructions, a
distinct but relatively small difference compared with the
orders-of-magnitude preference each protein displays be-
tween classes of hormones (fig. 1C; supplementary table S1,
Supplementary Material online).

We conclude that the functional inferences based on ML
reconstructions for these proteins are robust to incorporation
of large amounts of uncertainty. Qualitative measures of func-
tion—such as the presence/absence of a biochemical activity
or the relative preference between distinct classes of binding
partners—were identical between ML and AltAll versions of
the protein, even when these sequences differed at a very
large number of sites. Precise quantitative estimates of func-
tional parameters, however, were less robust, with the true
value presumably lying somewhere in or near a range defined
by these observations.

Functional Effects of Historical Substitutions are
Robust to Incorporating Uncertainty
We next evaluated the extent to which inferences about the
functional effects of historical substitutions are robust to
statistical uncertainty about the ancestral sequences into
which they are introduced. If epistasis exists between the
ambiguously reconstructed sites and the sites that puta-
tively changed the protein’s function, then inferences about
the effects of substitution in the latter class of sites could
depend strongly on the ancestral sequence chosen as the
genetic background for the experiments. To address this
issue, we assayed the functional effects of key historical sub-
stitutions on the AltAll ancestral reconstructions and com-
pared them to their effects on the ML reconstructions.

We first examined the historical ser36Pro substitution in
Anc-gkdup. When introduced into the ML protein, this mu-
tation was previously found to abolish the protein’s enzyme
activity and confer the acquisition of binding to the Pins
protein (Anderson et al. 2016). We found that the mutation
has the same qualitative effect when introduced into the
AltAll version of the ancestral protein, abolishing catalytic
activity and conferring Pins binding with similar affinity (fig.
2A).

We next examined the set of 14 large-effect historical mu-
tations in AncSR1DBD. Introducing this group of substitu-
tions into the ML reconstruction was previously shown to
recapitulate the historical change in DNA recognition, abol-
ishing luciferase activation from ERE and establishing activa-
tion on SRE (McKeown et al. 2014). We introduced them into
the AltAll version of AncSR1DBD and found that they con-
ferred a qualitatively and quantitatively similar shift in DNA
specificity (fig. 2B).

Finally, we studied the effect on the ancestral SR ligand-
binding domain of the derived amino acids Gln41 and Met75,
which were previously shown to dramatically decrease sensi-
tivity to estrogens and increase sensitivity to non-aromatized
steroids when introduced into the ML reconstruction of
AncSR1LBD. We found that introducing them into the
AltAll version had a similar effect (fig. 2C). Conversely, revert-
ing these residues to the ancestral states (glu41 and leu75) in
both the ML and the AltAll reconstructions of AncSR2LBD
restores the ancestral ligand preference, switching the pro-
tein’s preferred ligands from non-aromatized steroids to es-
trogens (fig. 2D).

We again observed some quantitative differences—typi-
cally by less than a factor of three—between the effects of the
mutations in the ML and AltAll backgrounds, but the qual-
itative effects were unchanged (fig. 2). Taken together, these
results indicate that the effects of historical substitutions are
robust to simultaneous incorporation of all plausible alternate
states, even when large degrees of uncertainty are present in
the ML reconstruction.

Bayesian Sampling from the Posterior Probability
Distribution
The AltAll strategy incorporates all non-ML states that are
plausible, defined as having a posterior probability at some
defined cutoff, and it excludes any that do not meet this
criterion. A Bayesian sampling approach, in contrast, will typ-
ically produce ancestral sequences that exclude most plausi-
ble alternate states (because their posterior probabilities are
by definition<0.50) in favor of the ML state, but it will in-
clude some implausible states with very low probabilities and
exclude some ML states that have very high posterior
probabilities.

We characterized the utility of the Bayesian sampling
method and the robustness of inferred ancestral functions
to uncertainty incorporated using this approach, by apply-
ing it to the three protein domain families. For each ances-
tral protein, we computationally generated at least one
million Bayesian reconstructions by sampling an amino
acid from the posterior probability distribution at each
site in the protein. The variation in the amount of uncer-
tainty among the three proteins led to ensembles of
Bayesian sequences with different characteristics (fig. 3).
For the Anc-gkdup and AncSR1DBDs, most of the generated
sequences differed from the ML sequence at fewer than 20
sites and were up to 40 log-units less likely. In the far more
uncertain AncSR1LBD, the Bayesian sequences differed from
the ML sequence by 50–100 residues and 60–170 ln-
likelihood units. The Bayesian sequences typically had lower
posterior probabilities than the AltAll reconstructions but
differed from the ML sequences at a similar number of sites.

For experimental analysis of each domain family, we ran-
domly chose five sequences from the generated ensemble of
Bayesian sequences (fig. 3 and supplementary table S2,
Supplementary Material online). In all cases, the sampled
Bayesian ancestors were many log units less likely to be cor-
rect and contained more expected errors than the ML recon-
structions. Compared with the AltAll sequences, all but one
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of the 15 sampled Bayesian ancestors had lower posterior
probability (by factors ranging from 10�4 to 10�49), and
most contained more expected errors (table 1). The various
reconstructions covered wide regions of sequence space, dif-
fering from each other by up to 104 residues in the case of
AncSR1LBD (table 2 and fig. 3).

We synthesized and experimentally characterized the sam-
pled sequences and found that functional inferences were
generally robust to incorporating uncertainty using the
Bayesian approach. For Anc-gkdup, all five Bayesian sequences
were, like the ML and AltAll proteins, effective guanylate ki-
nases with similar catalytic performance (fig. 4A). For
AncSR1DBD, all five Bayesian reconstructions of
AncSR1DBD activated from ERE but not from SRE, just as
both the ML and AltAll sequences did, and the degree of
activation they elicited was similar in all cases (fig. 4B).

For the AncSR1LBD, however, the five Bayesian ances-
tors were apparently nonfunctional, failing to activate tran-
scription in the presence of any ligand tested in either
major class; ligand-independent constitutive activity was
also lacking (fig. 4C and supplementary fig. S2,
Supplementary Material online). It is very unlikely that
the true ancestral protein lacked transcriptional activity,
because descendant proteins from a wide variety of species
have been tested, and virtually all of them function as
transcriptional activators; for the Bayesian sequences to
represent the true ancestral function, a very large number
of independent gains of transcriptional activity in various
SR and outgroup lineages would be required, an unlikely
and non-parsimonious scenario. We therefore conclude
that the Bayesian versions of AncSR1LBD are likely to be
artifactually non-functional, presumably because of the
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greater uncertainty of this ancestral protein and the result-
ing incorporation of more errors into Bayesian sequences.
The AncSR1LBD Bayesian samples are �100 ln-units less
likely than the ML ancestor, differ from it by 75–86 amino
acids, and contain 20–25 more expected errors—far more
uncertain by every measure than is the case for the other
protein domain families studied (fig. 3A and table 1).

Causes of Error in Bayesian-Sampled Ancestors
In contrast to the Bayesian reconstructions of AncSR1LBD,
the AltAll version was transcriptionally active and had specif-
icity similar to that of the ML ancestor, despite differing from
it at 65 sites—almost as many differences as the Bayesian
versions had. We hypothesized that the non-functionality
of the Bayesian reconstructions of AncSR1LBD might be
due to sampling of some very low-probability states—which
have a high probability of being incorrect—and the conse-
quent failure to include states reconstructed with very high
probability, which are almost certainly correct and are typi-
cally strongly conserved among extant proteins.

To gain further insight into this possibility, we specifically
evaluated additional sequences generated from the
AncSR1LBD posterior probability distribution that contained
fewer low-probability states. To accomplish this, we chose
from the ensemble the five sequences with the highest total
posterior probability (Best1-5; fig. 3D; reported in Eick et al.
2012). These Best sampled sequences covered a wide range of
space, differing substantially from the ML ancestor (by 55–59
residues), from the AltAll version (74–79 differences), and
from each other (63–82 differences). The Best sequences con-
tained between 87 and 90 expected errors, about the same as
AltAll and slightly fewer than those of the Bayesian ancestors
(tables 1 and 2). However, the Best sampled ancestors con-
tained only about half as many very low-probability states
(PP< 0.1) than the Bayesian samples, and AltAll contained
zero. The Bayesian samples also contained seven times more
sites at which very high-probability states (PP� 0.9) were ex-
cluded than did the Best sampled ancestors, and the AltAll
and ML sequences by definition contained zero (fig. 5).

When experimentally characterized (Eick et al. 2012), all five
Best sampled ancestors were estrogen-specific transcriptional
activators, activating in response to estradiol at concentrations
ranging from 10 to 1000 nM (fig. 4D; see Fig. S5B in Eick et al.
2012) but displaying no response to non-aromatized hor-
mones (supplementary fig. S2, Supplementary Material online;
see Fig. S5B in Eick et al., 2012). Thus, whereas all the Bayesian
reconstructions were nonfunctional, all seven non-Bayesian
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FIG. 3. Probability distributions of ancestral sequences generated by
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Fig. 3 Continued
difference in posterior probability relative to the ML reconstruction.
(A) Ensemble of Bayesian sampled reconstructions of Anc-gkdup (yel-
low), AncSR1DBD (green), and AncSR1LBD (pink). (B) Distribution of
1 million Anc-gkdup sequences. (C) Distribution of 1 million
AncSR1DBD sequences. (D) Distribution of 10 million AncSR1LBD
sequences. ML (open square), AltAll (star), five Bayesian sampled
sequences chosen at random for experimental characterization (light
colored circles), and five sampled sequences with the highest lnPP
(Best, open circles) are indicated.
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reconstructions, spanning a very large region of sequence
space, have similar functional phenotypes, indicating that
the inference of ancestral function is highly robust to incor-
poration of large amounts of statistical uncertainty but not, in
this case, when the Bayesian sampling method is used.
Notably, however, the Bayesian samples did not suggest a
different ancestral function but instead failed to function at all.

The biochemical properties of the low-probability states
incorporated into the Bayesian ancestors reinforce the view
that they are a likely cause of the non-functionality of these
sequences. Compared with the Best sampled ancestors, the
Bayesian sequences incorporated �3 times more low-
probability states at buried sites in the core of the protein,
which are generally subject to greater constraints for proper
folding than surface sites (fig. 5B). Further, the Bayesian se-
quence contained more non-conservative amino acid differ-
ences from the ML ancestor than did the Best Sampled or
AltAll sequences (fig. 5D and supplementary table S3,
Supplementary Material online). Thus, the Bayesian recon-
structions of AncSR1LBD were more likely to incorporate

erroneous amino acids that disrupt protein structure and
function.

Discussion

Robustness of Functional Inferences
Our findings have both practical and conceptual implications.
Practically, they suggest that qualitative functional infer-
ences— the presence/absence of a molecular function or
relative preference/specificity among ligands—about recon-
structed ancestral proteins are often robust to stochastic un-
certainty about the precise ancestral sequences, even when a
very large amount of uncertainty is present. We found that all
the functions we examined are qualitatively unchanged
across plausible sequence reconstructions in all three protein
domain families, even when very large numbers of alternate
plausible amino acids are incorporated into the protein.
However, precise quantitative estimates of function—such
as EC50, dissociation constant, or enzyme kinetic parame-
ters—did vary among alternative reconstructions. This varia-
tion was relatively small—a factor of two or three, in most
cases—and was far less than the differences between paralogs
or ancestral proteins with biologically distinct functions. Thus,
inferences about the precise quantitative parameters of mo-
lecular function should be made with caution, and experi-
mental characterization of the range of plausible values for
such parameters is particularly important. Our results are
broadly consistent with a variety of case-studies of other pro-
teins, which have found that qualitative inferences about the
functions of ancestral proteins are generally robust to uncer-
tainty about the ancestral sequence (Thomson et al. 2005;
Ortlund et al. 2007; Finnigan et al. 2012; Boucher et al. 2014;
Howard et al. 2014). Similarly, a recent study generated a small
library of variant proteins containing shuffled combinations
of possible ancestral states (not weighted by their posterior
probabilities) and found a general pattern of qualitative ro-
bustness among the variants, although differences were again
observed in quantitative measures of function (Bar-Rogovsky
et al. 2015).

The impacts of large-effect historical mutations on quali-
tative measures of function also appear to be generally robust
to uncertainty about the ancestral sequences. This result sug-
gests that the genetic causes for the evolution of ancient
protein functions can be identified with some confidence
using APR. The consistency of these substitutions’ effects
across reconstructions indicates that epistasis is limited be-
tween large-effect historical mutations and plausible alterna-
tive sequence states in the reconstruction.

Our study was not comprehensive. We specifically exam-
ined the robustness of inferences about protein function to
sequence uncertainty—particularly functions that changed
among paralogs over evolutionary time. There could be other
biochemical properties, such as stability or protein dynamics,
that are less robust to uncertainty. In cases in which uncer-
tainty has been assessed, however, estimates of ancestral pro-
tein stability have generally proven to be fairly robust to
uncertainty about the ancestral sequence (see refs.
Akanuma et al. 2013, 2015; Wheeler et al. 2016).

Table 2. Number of Amino Acid Differences among Alternative
Ancestral Reconstructions for Three Protein Domains.

Bayes

Anc-gkdup ML AltALL 1 2 3 4 5

ML *
AltALL 20 *
Bayes 1 7 21 *
Bayes 2 5 23 11 *
Bayes 3 11 21 14 13 *
Bayes 4 13 14 18 17 20 *
Bayes 5 10 19 17 15 19 17 *

Bayes

AncSR1DBD ML AltALL 1 2 3 4 5

ML *
AltALL 12 *
Bayes 1 7 11 *
Bayes 2 12 15 12 *
Bayes 3 9 11 11 14 *
Bayes 4 10 14 12 10 10 *
Bayes 5 12 15 14 20 15 16 *

Bayes Best

AncSR1LBD ML AltALL 1 2 3 4 5 1 2 3 4 5

ML *
AltALL 65 *
Bayes 1 75 89 *
Bayes 2 77 94 101 *
Bayes 3 76 89 93 101 *
Bayes 4 86 99 104 100 97 *
Bayes 5 76 83 98 94 101 97 *
Best 1 57 74 96 83 86 89 89 *
Best 2 55 79 96 90 90 85 84 79 *
Best 3 57 74 94 79 87 100 86 77 82 *
Best 4 55 78 91 91 89 89 87 71 73 76 *
Best 5 59 75 89 88 86 93 78 63 79 76 79 *

NOTE.—Anc-gkdup, AncSR1DBD, and AncSR1LBD domains are 187, 82, and 249
amino acids long, respectively.
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We examined only one source of uncertainty in ancestral
proteins: statistical ambiguity about ancestral sequences
given the data, phylogeny, and evolutionary model.
Previous theoretical and simulation studies showed that in-
corporating stochastic uncertainty about the underlying phy-
logeny does not strongly affect ancestral sequence
reconstruction (Hanson-Smith et al. 2010). Consistent with
this finding, several empirical case studies have found that
assuming different plausible phylogenies has only weak effects
on inferences of ancestral protein functions (Gaucher et al.
2003; Akanuma et al. 2015; Clifton and Jackson 2016; Steindel
et al. 2016) Systematic error in the tree, however, could still
affect ancestral sequences and their functions (Groussin et al.
2015). Further, comprehensive work has not been conducted
on the effects of the assumed model on ancestral reconstruc-
tions; however, research to date suggests that functional in-
ferences are generally robust to sequence uncertainty
associated with using different models and methods
(Ugalde et al. 2004; Thomson et al. 2005; Chang et al. 2007;
Devamani et al. 2016; Steindel et al. 2016). Further research
will be required to thoroughly assess the effect of these sour-
ces of uncertainty and potential error on functional infer-
ences about ancestral proteins.

Mutation, Epistasis, and the Robustness of Ancestral
Functions
The extraordinary functional robustness of the reconstructed
ancestral sequences we studied may seem surprising, given

the high degree of statistical uncertainty and the fact that
some of the alternate sequences differed from each other and
from the ML ancestors at scores of amino acid sites—up to a
third of the entire length of the protein. Most random amino
acid replacements in proteins are deleterious (Guo et al.
2004), so how can ancestral reconstructions be so robust to
sequence change?

Plausible alternate states are not random substitutions;
rather, they are drawn from the much smaller set of states
that are found in present-day members of the family, partic-
ularly those descending on branches near the ancestral node
of interest. Unambiguous reconstructions occur when the
ancestral state is conserved in large numbers of extant se-
quences descending from the node of interest and its close
outgroups, reflecting strong functional constraints on that
site. In contrast, ambiguous reconstructions occur when in-
formation about the ancestral state is lost in most descendant
taxa, due to multiple exchanges between amino acid states
on branches near the ancestral node of interest, a situation
that leads to relatively small differences in the likelihoods of
these states at the node. This kind of evolutionary dynamic
occurs when functional constraints discriminate weakly or
not at all between these states, which occurs only when
they are all compatible with the protein’s functions. Thus,
uncertainty about the ancestral state tends to occur when
multiple states are compatible with functional constraints,
and the protein’s function in turn is robust to which of these
states is incorporated. The distribution of uncertainty and
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plausible alternative reconstructions around a protein’s three-
dimensional structure may also provide useful information
for efforts to engineer or design proteins with useful proper-
ties while maintaining core functions.

Epistasis is rampant among potential replacements in
proteins and appears to be a widespread phenomenon
among the substitutions that occurred during evolution
(Starr and Thornton 2016; Storz 2016). In contrast, our ob-
servation that key historical substitutions have very similar
effects on function when introduced into the ML or AltAll
versions of a protein suggests that there are few strong ep-
istatic interactions between these substitutions and the am-
biguously reconstructed states. Similarly, our observation
that introducing large numbers of alternative residues simul-
taneously into an ML protein does not strongly change its
function suggests that there are few strong epistatic inter-
actions among the plausible states at ambiguously recon-
structed sites. How can a methodology that infers ancestral
states on a site-by-site basis—with no attention to potential
interactions or covariation among sites—not be under-
mined by epistasis?

It appears that strong epistatic interactions, to the extent
that they functionally constrain the protein, are built into the

phylogenetic structure of conservation and variability in
the data with respect to ancestral reconstructions. That
is, if some function depends on a specific combination of
states across sites, those states tend to be consistently
inherited together on the phylogeny and therefore to
be reconstructed with little ambiguity. As a result, the
states that make up compatible combinations will be
generally conserved within clades and will be recon-
structed with high confidence in the ancestors of those
clades. That is, functional dependence across sites is re-
flected in the coupling of states at those sites on the
tree—in the phylogenetic signal within the data—so
this coupling tends to be reconstructed in the ancestors
even when the probabilistic model itself does not explic-
itly incorporate it into the calculation of likelihoods.
Supporting this view, previous studies of mutational tra-
jectories in specific proteins have identified very strong
epistatic interactions among historical substitutions, but
those interacting sites were reconstructed in ancestors
across the tree without ambiguity because changes in
each site tended to lock in the derived state in the de-
scendant clade (Ortlund et al. 2007; Lynch et al. 2011;
Smith et al. 2013; McKeown et al. 2014).
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FIG. 5. Sequence characteristics of functional and non-functional AncSR1LBD reconstructions. (A,B) Non-functional Bayesian ancestors incor-
porate more low-probability states than functional ancestors. Columns show the average number of residues per protein in each cateogry that
differ from AncSR1LBD ML and have PP< 0.1, for all residues (A), and buried residues (B). (C) Non-functional Bayesian ancestors exclude more
high-probability states than functional ancestors, as indicated by the average number of amino acid residues with PP> 0.9 that were excluded per
protein in each category. (D) Types of amino acid differences between AncSR1LBD ML and alternative reconstructions. Amino acids were
characterized as hydrophobic aliphatic (I, V, L), hydrophobic aromatic (F, Y, W), hydrophobic other (A, G, M), polar negative (E, D), polar positive
(K, R), or polar neutral (Q, N, C, S, T), or other (P, H). Changes within a class were classified as conservative, those between were designated non-
conservative.
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Methods for Characterizing Robustness
Although we examined three protein domain families with
different kinds of functions, structural architectures, and de-
grees of uncertainty, some other ancestral proteins or families
might not be so robust to ambiguity about the precise an-
cestral sequence. It therefore remains essential for studies
using APR to experimentally characterize the robustness of
their functional conclusions to uncertainty about ancestral
sequence reconstruction.

Our findings provide some guidance concerning the best
way to accomplish this task. The AltAll strategy offers several
advantages for characterizing uncertainty. First, it is conser-
vative, simultaneously incorporating an alternative plausible
residue at every ambiguously reconstructed site in the pro-
tein. The AltAll sequence therefore occupies a position at or
near the far edge of the cloud of plausible reconstruction
sequences, which contains all possible combinations of the
most probable and second-most probable plausible residues.
Depending on the number of ambiguously reconstructed
sites, this cloud may contain a very large number of individual
sequences—from 4096 in the case of AncSR1 DBD to 3.7 �
1019 for AncSR1 LBD. The true ancestral sequence is almost
certainly closer to the ML reconstruction than the AltAll se-
quence is, making AltAll a conservative test of robustness.
When the ML and AltAll sequences are functionally similar, it
is likely that all or most combinations of the residues they
contain will also share similar functions; our experiments on
variants of AncSR2LBD-ML containing single plausible alter-
native states are consistent with this expectation.

A second advantage is that the AltAll strategy incor-
porates potential epistasis among ambiguously recon-
structed residues by testing all plausible reconstructed
amino acids together. Third, the strategy is highly effi-
cient, allowing a strong test of robustness with a single
experiment, even when a reconstructed protein contains
many ambiguously reconstructed sites. Some caution is
still required, however: although the AltAll sequence is a
conservative test, it is not a comprehensive one, because
it tests a single alternative sequence rather than all—or
even many—possible combinations of plausible amino
acids. In some cases, it may be useful to also test the
effects of specific alternate residues on function, such as
cases where ambiguously reconstructed sites are in posi-
tions of obvious structural importance, or where the pos-
sibility of specific epistatic couplings is of interest.

Bayesian sampling has the advantage of testing multiple
ancestral sequences, and Bayesian inference is a generally
appealing statistical framework for hypothesis evaluation
and parameter estimation. Attempting to characterize the
functions of reconstructed ancestral proteins by sampling a
limited number of sequences from the posterior distribu-
tion, however, has some apparent disadvantages. When am-
biguity about the reconstruction is low or moderate, we
found that this strategy, like the AltAll approach, yielded
ancestral proteins with functions similar to the ML recon-
struction. When ambiguity was high, however, the Bayesian
samples were strongly skewed towards reduced or abolished
function, and this is unlikely to accurately reflect the state of

the true ancestor. We propose three possible causes of this
apparent bias.

First, unlike the AltAll reconstructions, the Bayesian-
sampled sequences incorporated very low-probability resi-
dues, which by definition are more likely to be erroneous
than high-probability states. Further, compared with the
alternative residues in AltAll proteins, the low-probability
states found in Bayesian sequences are more likely to occur
at sites in the protein’s core and to change biochemical
properties. Such errors are more likely to affect the protein’s
structure, stability, and function and may therefore have
caused the Bayesian-sampled ancestors to be artifactually
non-functional.

Second, the use of an incorrect evolutionary model may
contribute to the susceptibility of Bayesian ancestors to a loss
of function. Model violation—particularly when a state has
higher equilibrium frequency in the model than it does at a
site in a real protein—might inflate the posterior probability
of a deleterious residue that is observed rarely or never in
extant sequences; if such states are associated with posterior
probabilities of a few percent or even less, it is likely that one
or more will be sampled somewhere along a protein’s length.
In contrast, the AltAll proteins incorporate only states with
probability greater than the plausibility cutoff (0.20 in our
work), which is far more likely to occur when the state is
present in multiple sequences descending from branches
near the node of interest rather than due to model violation
alone.

Third, sampling error may tend to cause a bias towards
non-functionality in small samples of Bayesian ancestral pro-
teins. In principle, it should be possible to estimate the func-
tion of the unknown ancestral sequence by sampling from
the distribution of possible ancestral sequences, character-
izing the function of each sampled protein, and taking the
average of those observations, each weighted by the poste-
rior probability of its sequence. In practice, however, obtain-
ing a representative sample may be impossible. When
uncertainty is high, the number of sequences with very
low probabilities and compromised functions is immense.
Random sampling will capture these sequences, but may
often miss the rarer, functional sequences with higher pos-
terior probabilities. This occurred for AncSR1-LBD: there are
a large number of high-probability functional sequences in
the universe of possible ancestors, including the ML se-
quence, the AltAll sequence, the five proteins with the high-
est probabilities in the sampled ensemble and many of the
virtually innumerable proteins between these sequences.
None of these, however, was included in the random sample
we picked for experimental characterization, which con-
sisted entirely of poorly functioning proteins with posterior
probabilities many orders of magnitude lower than the func-
tional sequences. If even one functional sequence with
higher posterior probability had been sampled, it would
have dominated the weighted estimate of the ancestral pro-
tein’s function. But because these sequences are so rare rel-
ative to the vast number of nonfunctional sequences, they
can be stochastically excluded from small samples, leading
to a bias towards non-functionality. When uncertainty is
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high, the sample size required to ensure a reasonably accu-
rate representation of function across the posterior distri-
bution of sequences is likely to be experimentally intractable.

Distinguishing among these possible explanations will re-
quire further research. Whatever the causes of the suscepti-
bility of Bayesian samples of ancestral sequences towards
non-functionality when uncertainty is high, the approach is
best used to evaluate the posterior probabilities of specific
hypotheses about function, and the evidence about function
provided by any specific sequence should be weighted by the
sequence’s posterior probability. Bayesian sampling should
not be used to evaluate robustness per se, where one or
even several observations of a nonfunctional or poorly func-
tioning sequence is taken as evidence against the hypothesis
that the ancestral protein functioned.

Vast Networks of Functional Proteins in Sequence
Space
Finally, our results have implications for our understanding of
the distribution of protein functions in sequence space. The
proteins we studied allowed up to 90 amino acids—more than
a third of all residues in the sequence—to be substituted with-
out changing the function. This result indicates that the net-
workofproteinsequencesthatsharesthesamefunctionistruly
vast. This does not imply that all sequences so distant from the
ML reconstruction have similar functions, of course, because so
many mutations are deleterious, so the probability that any
protein would tolerate 90 random replacements is virtually
zero. Rather, our observations indicate that the network of
functionally similar sequences extends, presumably sparsely,
over an extraordinarily large region of sequence space, and
that the substitutions that occurred during evolution consti-
tute a set of very long bridges—possibly quite narrow ones—
through this space. Ancestral sequence reconstructions there-
fore appear to provide useful information about the distant
addresses of presumably rare proteins with similar functions.

Methods

Ancestral Sequence Reconstruction
Posterior probability distributions at each site were inferred
using the same data, evolutionary model, and phylogeny as in
the original published reports (Eick et al. 2012; McKeown et al.
2014; Anderson et al. 2016). Specifically, Anc-gkdup,

AncGK1PID, AncSR1DBD, AncSR1LBD, and AncSR2LBD
were inferred from protein alignments of 224, 213, 184, and
213 sequences, respectively, using the best-fitting evolution-
ary model chosen using Prottest (Abascal et al. 2005), the ML
phylogeny as described in each paper, and the maximum
likelihood method of Yang et al. (1995) as implemented in
Lazarus software. Further details are provided in references
(Eick et al. 2012; McKeown et al. 2014; Anderson et al. 2016).

Each ancestral sequence is a string consisting of one amino
acid state at each site in the protein. The ML sequence com-
prises the state with the maximum posterior probability at
each site. The AltAll sequence comprises the state with the
second-highest posterior probability if that state has
PP> 0.20 and the maximum likelihood state otherwise.

Each Bayesian sequence was generated by sampling at each
site one state from the posterior probability distribution at
that site. For each protein, an ensemble of at least 1 million
sequences was generated, from which 5 were chosen at ran-
dom for experimental characterization. For AncSR1LBD, the
five sequences in the ensemble with the highest posterior
probability were also assessed. Sequences for all ancestral pro-
teins have been deposited with GenBank (supplementary
table S4, Supplementary Material online).

The posterior probability of a sequence is the product
over sites of the posterior probability of the state at each site.
The expected number of errors in a reconstructed sequence
is the sum over sites of one minus the posterior probability
at each site.

GK Domain Functional Characterization
Coding sequences for ancestors were generated and synthe-
sized (GenScript) after codon optimization for expression in
E. coli and then inserted into standard plasmid vectors for E.
coli expression. Plasmids were transformed into BL21(DE3)
competent E. coli that were grown on Luria broth (LB) plates
under ampicillin (100 lg=mL) selection overnight. Fifty-
milliliter starter cultures were generated and allowed to
grow until turbid. Four liters of LB were inoculated with
starter culture, allowed to grow to an OD600 of 0.7, and
then induced by addition of 200 lM IPTG overnight at 20
�C. Protein purification was carried out using sequential
NiNTA affinity, anion exchange, and size-exclusion chroma-
tographies. All proteins eluted as predicted monomers from
the size-exclusion column, and their purities were assessed to
be>95% by Coomassie staining of a SDS-PAGE gel. Proteins
were concentrated using Vivaspin concentrators (Sigma-
Aldrich), flash-frozen in liquid nitrogen, and stored at�80
�C in buffer (20 mM Tris, pH 7.5, 150 mM NaCl, 1 mM DTT).

To assess the catalytic function of ancestral guanylate ki-
nases, we used a coupled-enzyme assay as described previ-
ously (Agarwal et al. 1978). Briefly, phosphoryl-transfer is
detected by oxidation of NADH by lactate dehydrogenase,
which results in a decrease in absorbance at 340 nm.
Guanylate kinase enzyme was assayed at 50–200 nM in assay
buffer (100 mM Tris, pH 7.5, 100 mM KCl, 10 mM MgCl2,
1.5 mM sodium phosphoenol pyruvate, 300 mM NADH,
4 mM ATP, pyruvate kinase, and lactate dehydrogenase).
Initial GMP concentrations ranged from 500 to 1 mM. The
reaction was initiated by addition of GMP and brief mixing,
followed by absorption measurement using a Tecan Safire
plate reader. Reactions were carried out at 30 �C and mea-
sured at 15 s intervals for 30 cycles. Data were analyzed and
plotted using GraphPad Prism. Reaction rates are plotted as
initial rate of ADP production.

Fluorescence anisotropy binding assays were performed on
a Tecan Sapphire 96-well plate reader equipped with auto-
mated polarizers at room temperature. A FITC-labeled �20
amino acid peptide (GenScript) of the D. melanogaster Pins-
Linker peptide (0.25 mM) was titrated with each binding part-
ner in phospho-buffered saline solution with 1mM DTT.
Titration curves were fitted with a classical one-site binding
model.
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Steroid Receptor DBD Functional Characterization
DNA sequences encoding the AncSR1 ML, AltAll, and Bayes
DBDs were codon-optimized for expression in mammalian
cells, synthesized by GenScript, cloned into the mammalian
expression vector pCMV-AD (Stratagene), and fused in-
frame with the NF-jB activation domain. We used the re-
porter plasmid containing the estrogen response element,
pGL3-4(EREc38) described by Tyulmenkov et al. (2000) for
functional assays. This reporter contains four copies of the
estrogen receptor recognition sequence upstream of a lucif-
erase reporter gene. The SRE reporter plasmid was made by
introducing AGAACA half sites into this sequence and hav-
ing this promoter sequence synthesized by Blue Heron
Biotechnology, followed by cloning of the promoter into
the pGL3-4(EREc38) plasmid.

Activation of the reporter constructs was assessed by
luciferase reporter assays in CV-1 cells as described in detail
in McKeown et al. (2014). Mutants were generated using site-
directed mutagenesis (QuikChange Lightning, Stratagene), and
all clones were verified by sequencing (Genewiz, Inc.).

Steroid Receptor LBD Functional Characterization
DNA sequences encoding 11 alternate AncSR1LBDs were
synthesized by GenScript after codon optimization for expres-
sion in Chinese hamster ovary cells (CHO-K1). The AltAll
version of AncSR2LBD (26 amino acid differences from the
ML ancestor) was also synthesized by Genscript. All LBD se-
quences were cloned in-frame into the pSG5-Gal4 DBD vec-
tor with the human GR hinge and verified by Sanger
sequencing analysis. Sensitivity of the alternative LBDs to var-
ious hormones was determined by luciferase reporter assays
in CHO-K1 cells as described previously (Eick et al. 2012;
Harms et al. 2013). Dose–response relationships were esti-
mated using nonlinear regression in Prism4 software
(GraphPad Software, Inc.); fold increases in activation were
calculated relative to the vehicle-only (ethanol) control.
Sensitivity to hormone is reported as the EC50 value—the
hormone concentration at which 50% activation of the re-
ceptor was observed. All assays were repeated at least in
triplicate. Mutagenesis was performed using Stratagene’s
QuickChange Lightning site-directed mutagenesis kit and
clones were verified by Sanger sequencing (Genewiz, Inc.).

Sequence Analysis
Amino acids were classified (Betts and Russell 2003) based
on their biochemical properties: hydrophobic aliphatic (I, V,
L), hydrophobic aromatic (F, Y, W), hydrophobic other (A, G,
M), polar negative (E, D), polar positive (K, R), polar neutral
(Q, N, C, S, T), or other (P, H). Substitutions among sites
within a class were classified as conservative, whereas those
between classes were designated non-conservative. Non-
radical non-conservative changes were considered to be
the following: hydrophobic aliphatic to/from hydrophobic
other; hydrophobic aromatic to/from His; polar neutral to/
from polar negative; polar neutral to/from polar positive;
polar positive to/from His. All other types of changes were
considered radical. Residues were also classified as buried or
exposed based on their solvent exposure in the crystal

structure of the human ERa LBD (PDB 1ERE), as assessed
using ASAView (Ahmad et al. 2004). Residues with a relative
exposed area of�10% were considered buried, whereas the
remaining residues were classified as exposed (Le and
Gascuel 2010). Results are summarized in supplementary
table S3, Supplementary Material online.

Supplementary Material
Supplementary figures S1–S2 and tables S1–S4 are available at
Molecular Biology and Evolution online.
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